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1 Introduction

This document covers the design and implementation plan for the DARKO system architec-

ture. It should be seen as an executive summary of the overall system architecture that will

be used throughout the project, which will continuously be updated as the development

progresses and serve as documentation for the DARKO development teams internally. We

outline the general software architecture, tools for deployment of components, and testing

procedures using a simulation environment.

2 Architecture

We have developed a system architecture mostly based on the open-source Robot Operating

System (ROS) middleware. As a consequence, DARKO’s system architecture is inherently

component-based, built around the principles of re-usability and low coupling. As of now,

we are exclusively using ROS 1 in favour of ROS 2; and specifically, a combination of

ROS Melodic and ROS Noetic. Most of the components are using Melodic, in part to

ease integration with existing software provided with the robot platform from Robotnik

(which is currently only available for Melodic). The consortium is discussing, and plan to

work towards, a partial or full switch to ROS 2 later in the project, in order to ensure the

longevity and easy uptake of the software we develop.

Given the nature of the project, on top of the middleware, we model our overall system

architecture as composed of functional layers.

At the bottom, an ability-level, encapsulating the basic robot functionalities like sensing,

control, localisation, path planning, pick and place operations, etc. This layer includes

modules in particular from WP2, WP4 and WP6; facilitating low-latency, closed-loop

control of individual lower level abilities of the robots.

On top of this, we have an information layer that encompasses more long-term and

context-specific knowledge and abilities, enabling robots for safe and efficient operation

in shared environments. This layer enables the robot to collect and refine knowledge

about the environment it is operating in, as well as functionalities allowing to utilise this

knowledge. Hence, this layer comprises primarily modules developed in WP3 and WP6.

Finally, a risk-aware execution layer includes modules from WP7 to assure that the

system will execute its tasks in a safe way.

A high-level view of this composition is shown in Figure 1.

The overall architecture is presented more concretely as a flow chart in Figure 2. This

flow chart captures the main directions of data flow on a conceptual level, and abstracts

from the actual software packages to be integrated in DARKO. The flow chart is organised

around work packages rather than the layers described above, but the risk-aware execution

layer comprises the modules in WP7 as well as the beige Task Planning box which is closely

connected to WP7, the information layer comprises the mapping and map server modules

in WP3 as well as the global motion planning in T6.3, and the ability layer includes the

remaining modules, which all act directly on live data.

While Figure 2 captures the functional architecture that guides the development and

integration in DARKO, Figure 3 is an automatically generated snapshot of the status of

software running on the live robot platform, and their run-time connections.

3 Usage and deployment

Within the project, we have agreed to use a git-based workflow for source code manage-

ment. We have a project-central repository hosted at a private GitLab instance at ORU. A
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WP6

WP5

WP3

WP2

DARKO

Software architecture,  
high-level view
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WP4

Manipulation (Planning
and Control)
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Risk Management
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Figure 1: High-level view of the DARKO software architecture.
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Figure 2: Overall flow chart of the main modules involved in DARKO’s software architecture,

and the types of data passed between the modules as input and output.
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Figure 3: Snapshot of the ROS computation graph, filtered for the most relevant software

nodes running live on the robot, and their connections.
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Figure 4: DARKO software repositories hosted at the project-internal GitLab instance at ORU.

list of currently available DARKO software packages hosted there is captured in Figure 4.

These repositories includes further links to packages hosted elsewhere, such as public

GitHub repositores. We also maintain a separate public-facing GitLab space.

Certain software components from industrial partner Bosch, which include intellectual

property that needs to be protected, are shared with partners in binary form as ROS Debian

packages (.deb) or Docker images. Selected components will be open-sourced at a later

point during the project once the necessary release processes have been executed.

In order to synchronise the software modules installed and running on the three DARKO

robot platforms in the consortium, we maintain rosinstall files to be used for cloning all

repositories at the correct version, in an organised way. Likewise, the DARKO simulator

that we develop for facilitating testing and integration (see Section 4), will use a similar

rosinstall workspace description.

We make use of wiki pages in the DARKO GitLab space to share documentation about

the overall workflow, accessing and operating the robot platforms, as well as usage of

certain software modules (see Figure 5.) We track progress, especially towards project

milestones, using the built-in issue tracker in GitLab, which makes it easy to keep track of

outstanding issues, deadlines, and responsibilities.

The DARKO robots are connected to a virtual private network (VPN) via vpn.aass.oru.se,

to which project developers can connect in order to easily work directly on the robot without

being physically present. This setup makes it easy to collaborate towards deployment

of DARKO software (including debugging and refinement) even in an internationally

distributed project such as this.
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Figure 5: The DARKO project-internal wiki

4 Testing and simulation

Gazebo simulation for integration testing

For integration testing of the DARKO software, we have developed a fully ROS-integrated

simulation using the Gazebo simulator. We are currently using Gazebo 9 in a Docker

container running ROS Melodic, which matches the software versions run on the real

robot’s main computer.

The Gazebo simulation approximately replicates the initial DARKO robot platform

with its sensor setup along with a Franka Panda manipulator and a standard gripper. The

sensors are placed in the same locations as on the real robot. While we replicate the most

important sensor characteristics, such as type of camera lens (rectilinear vs. fisheye), or 3D

lidar resolution, we do not accurately model noise effects since the goal of the simulation

is not to train or evaluate models for perception. Instead, the focus is to replicate a typical

workflow from picking of objects from a source bin by moving both the mobile base and

the manipulator, initiating a throwing action, and thereby placing the object into a target

bin. For this purpose, we simulate the BSH shelf replica, the boxes and trays as well as

a conveyor belt using CAD models. Items for picking are represented using simplified

primitives, since accurately modeling plastic bags etc. and the resulting contact forces

for gripping is out of the scope of this simulator. Both static and walking humans have

been added to the simulated warehouse scene to enable testing of components from work

package 5.

To simplify testing of components in both simulation and on the real robot, we have

matched the ROS topic names, namespaces and TF frame ID as closely as possible between

simulation and hardware.

For certain components that are computationally complex, such as the perception

pipeline, we also provide drop-in mock components (with the same ROS interface) that e.g.
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Figure 6: Gazebo simulation of the DARKO use-case in a simulated warehouse with robot

platform, BSH shelf replica, conveyor and static and walking humans. The bottom right picture

shows the resulting visualization of RGB-D, lidar and fisheye sensor data in Rviz using the

same sensor arrangement as on the real robot.

provide ground-truth human and object locations to downstream components, without

requiring each developer of those components to run the full perception stack on his or

her development computer. This way, the simulation can run in approximately real-time.

Physics-based simulation for throwing using pyBullet

Physical effects such as accurate multi-contact forces, nonlinear object flying dynamics

are notoriously hard to model correctly in Gazebo. Due to this and for historic reasons, a

separate physics-based simulator has been developed for the throwing task. This simulator

is based upon pyBullet (a Python wrapper around the Bullet physics engine) and currently

not coupled with the Gazebo simulation. A picture of the throwing simulation with the

mobile manipulator is shown in Figure 7 (bottom). The simulation script takes target

box position relative to the mobile manipulator as argument, calculates batches of valid

throwing trajectories within seconds and simulate the minimium-time one.

Since in this phase, the simulation is for the purpose of finding valid joint space

throwing configuration in a reliable and computationally efficient manner, we make a

number of assumptions; such as known accurate flying dynamics, perfect grasping and

trajectory tracking. In future work, we will relax the assumptions and extend our work

to close the sim-to-real gap, and to replicate the joint states from the pyBullet simulation

into Gazebo.
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5 Milestone 1

As DARKO’s Milestone 1 we have implemented a concrete deployment of the software

architecture. Going beyond the simulation that was originally planned, we have imple-

mented a demonstration that includes prototype versions of most of the modules from the

DARKO work packages live on the initial robot platform (from D1.1). Some impressions

of the milestone demonstration can be seen in Figure 7.

The milestone demonstration includes live versions of

• basic mapping,

• basic navigation,

• human pose tracking (tracking of centroids, detection of full body pose),

• short- and long-term human motion prediction,

• prototype object-level semantics (detecting the blue box for picking),

• integration of perception (Bosch), grasp pose generation (ORU), and grasp execution

(UNIPI) via the defined interfaces (although the grasp pose is a hard-coded dummy

value since we do not yet have a trained model for the target BSH objects),

• alignment prediction and verification (for estimating localisation risk),

• creating and publishing long-term maps of dynamics,

• mock-up modules for context-aware human-robot spatial interaction and causal

discovery.

Figure 7: Snapshots from the MS1 demo, with live integration of deployment, human-aware

navigation, and prototype manipulation components on the DARKO robot platform, plus

physics-based simulation of throwing using the pyBullet simulation.
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